Action recognition using context and appearance distribution features

Xinxiao Wu*, Dong Xu, Lixin Duan, Jiebo Luo

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

207 Citations (Scopus)

Abstract

We first propose a new spatio-temporal context distribution feature of interest points for human action recognition. Each action video is expressed as a set of relative XYT coordinates between pairwise interest points in a local region. We learn a global GMM (referred to as Universal Background Model, UBM) using the relative coordinate features from all the training videos, and then represent each video as the normalized parameters of a video-specific GMM adapted from the global GMM. In order to capture the spatio-temporal relationships at different levels, multiple GMMs are utilized to describe the context distributions of interest points over multi-scale local regions. To describe the appearance information of an action video, we also propose to use GMM to characterize the distribution of local appearance features from the cuboids centered around the interest points. Accordingly, an action video can be represented by two types of distribution features: 1) multiple GMM distributions of spatio-temporal context; 2) GMM distribution of local video appearance. To effectively fuse these two types of heterogeneous and complementary distribution features, we additionally propose a new learning algorithm, called Multiple Kernel Learning with Augmented Features (AFMKL), to learn an adapted classifier based on multiple kernels and the pre-learned classifiers of other action classes. Extensive experiments on KTH, multi-view IXMAS and complex UCF sports datasets demonstrate that our method generally achieves higher recognition accuracy than other state-of-the-art methods.

Original languageEnglish
Title of host publication2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011
PublisherIEEE Computer Society
Pages489-496
Number of pages8
ISBN (Print)9781457703942
DOIs
Publication statusPublished - 2011
Externally publishedYes

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Fingerprint

Dive into the research topics of 'Action recognition using context and appearance distribution features'. Together they form a unique fingerprint.

Cite this