Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO4 batteries

Qiyue Zhang, Ersha Fan*, Jiao Lin, Sisheng Sun, Xiaodong Zhang, Renjie Chen, Feng Wu, Li Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 52
  • Captures
    • Readers: 43
see details

Abstract

With the large-scale application of LiFePO4 (LFP) in energy storage and electric vehicles, the recycling of spent lithium LFP batteries has gained more attention. However, recycling spent LFP is less economically feasible owing to the poor economic value of Fe products, which causes a problem for both the efficiency and economy. This work proposes a highly economical acid-free mechanochemical approach for the efficient and selective extraction of lithium (Li) from spent LFP battery cathode materials. The selective release of 98.9 % of Li from the LFP crystal structure is achieved at a reaction time of 5 h, a rotational speed of 500 rpm, and sodium citrate (Na3Cit) to LFP mass ratio of 10. Meanwhile, Fe is reserved in the form of FePO4 in the olivine structure. The use of Na3Cit as a co-milling agent ensures a pollution-free recovery process and efficient extraction of Li+. The chelation of Li+ with organic ligands (Cit3-) is the key to the efficient selective recovery of Li+ from the olivine LFP structure via the mechanochemical process. The economic analysis indicates that the method is feasible and ensures industrial viability. The acid-free mechanochemical (MC) process reported in this work provides a novel route to selectively recover Li from spent LFP efficiently and highly economically.

Original languageEnglish
Article number130160
JournalJournal of Hazardous Materials
Volume443
DOIs
Publication statusPublished - 5 Feb 2023

Keywords

  • Economic benefits
  • Mechanochemical process
  • Selective extraction
  • Spent LiFePO batteries

Fingerprint

Dive into the research topics of 'Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO4 batteries'. Together they form a unique fingerprint.

Cite this

Zhang, Q., Fan, E., Lin, J., Sun, S., Zhang, X., Chen, R., Wu, F., & Li, L. (2023). Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO4 batteries. Journal of Hazardous Materials, 443, Article 130160. https://doi.org/10.1016/j.jhazmat.2022.130160