TY - GEN
T1 - A Unified Joint Approach with Topological Context Learning and Rule Augmentation for Knowledge Graph Completion
AU - Guo, Jingtao
AU - Zhang, Chunxia
AU - Li, Lingxi
AU - Xue, Xiaojun
AU - Niu, Zhendong
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - Knowledge graph completion (KGC) task is to infer the missing knowledge in the knowledge graph based on known factual triples. However, present KGC approaches still face the following two challenges. Those methods perform simple linear update on relation representation, and only local neighborhood information is aggregated, which makes it difficult to capture logic semantic between relations and global topological context information. To tackle the above challenges, we propose a unified joint approach with Topological Context learning and Rule Augmentation (TCRA) for KGC. The TCRA framework consists of an entity topological context learning mechanism based on dual-branch hierarchical graph attention network, and a relation rule context learning mechanism based on Rule-Transformer and rule-to-relation aggregator. The former mechanism encodes the topological structure features of entities, aggregates the local neighborhood topological context information of entities on the three levels (entity, relation and triple), and build clusters of global head or tail entities related to the same relation. It can capture the local and global topological context information of entities related to the same relation. The latter mechanism introduces chain-like Horn rules as the context information of relations, and encodes the logical semantic of relations to enrich the relation representation. Experimental performances on three benchmark datasets FB15k-237, WN18RR and Kinship indicate the effectiveness and superiority of our proposed approach. The codes are publicly available.
AB - Knowledge graph completion (KGC) task is to infer the missing knowledge in the knowledge graph based on known factual triples. However, present KGC approaches still face the following two challenges. Those methods perform simple linear update on relation representation, and only local neighborhood information is aggregated, which makes it difficult to capture logic semantic between relations and global topological context information. To tackle the above challenges, we propose a unified joint approach with Topological Context learning and Rule Augmentation (TCRA) for KGC. The TCRA framework consists of an entity topological context learning mechanism based on dual-branch hierarchical graph attention network, and a relation rule context learning mechanism based on Rule-Transformer and rule-to-relation aggregator. The former mechanism encodes the topological structure features of entities, aggregates the local neighborhood topological context information of entities on the three levels (entity, relation and triple), and build clusters of global head or tail entities related to the same relation. It can capture the local and global topological context information of entities related to the same relation. The latter mechanism introduces chain-like Horn rules as the context information of relations, and encodes the logical semantic of relations to enrich the relation representation. Experimental performances on three benchmark datasets FB15k-237, WN18RR and Kinship indicate the effectiveness and superiority of our proposed approach. The codes are publicly available.
UR - http://www.scopus.com/inward/record.url?scp=85205320257&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85205320257
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 13686
EP - 13696
BT - 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
A2 - Ku, Lun-Wei
A2 - Martins, Andre
A2 - Srikumar, Vivek
PB - Association for Computational Linguistics (ACL)
T2 - Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Y2 - 11 August 2024 through 16 August 2024
ER -