A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries

Junru Wu, Xianshu Wang, Qi Liu, Shuwei Wang, Dong Zhou*, Feiyu Kang, Devaraj Shanmukaraj, Michel Armand*, Teofilo Rojo, Baohua Li*, Guoxiu Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

125 Citations (Scopus)

Abstract

The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy “shuttle-relay” Li metal battery, where additional capacity is generated from the electrolyte’s anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm−1 at 25 °C), oxidation stability (up to 5.5 V vs Li/Li+), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism).

Original languageEnglish
Article number5746
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Dec 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries'. Together they form a unique fingerprint.

Cite this