A simultaneous computing framework for metamodel-based design optimization

Teng Long*, Lv Wang, Di Wu, Xiaosong Guo, Li Liu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

At the aim of reducing the computational time of engineering design optimization problems using metamodeling technologies, we developed a flexible distributed framework independent of any third-part parallel computing software to implement simultaneous sampling during metamodel-based design optimization procedures. In this paper, the idea and implementation of hardware configuration, software structure, the main functional modular and interfaces of this framework are represented in detail. The proposed framework is capable of integrating black-box functions and legacy software for analyzing and common MBDO methods for space exploring. In addition, a message-based communication infrastructure based on TCP/IP protocol is developed for distributed data exchange. The Client/Server architecture and computing budget allocation algorithm considering software dependency enable samples to be effectively allocated to the distributed computing nodes for simultaneous execution, which gives rise to decreasing the elapsed time and improving MBDO's efficiency. Through testing on several numerical benchmark problems, the favorable results demonstrate that the proposal framework can evidently save the computational time, and is practical for engineering MBDO problems.1

Original languageEnglish
Title of host publication40th Design Automation Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846322
DOIs
Publication statusPublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: 17 Aug 201420 Aug 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume2B

Conference

ConferenceASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period17/08/1420/08/14

Fingerprint

Dive into the research topics of 'A simultaneous computing framework for metamodel-based design optimization'. Together they form a unique fingerprint.

Cite this