A Packaged 90-to-96GHz 16-Element Phased Array with 18.8/15.8dBm Psat/OP1dB, 14.8% TX PAE in 65nm CMOS Process and +51dBm Array EIRP

Wei Zhu*, Jian Zhang, Jiawen Wang, Ruitao Wang, Chenguang Li, Kai Wang, Yan Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This work presents a packaged 90-to-96GHz 16-Element transceiver phased array. It is constructed using 4-channel silicon beamformers in 65nm CMOS process, external power amplifiers (PAs) and low noise amplifiers in 100nm GaN process as well as Vivaldi antennas on a tsm-ds3 based printed circuit board (PCB). A transformer-and coupled-line-based 8-to-1 power combine technique is proposed in the silicon beamformer to achieve a measured Psat of +18.8dBm with an OP1dB of +15.8dBm and a peak PAE of 14.8% in CMOS. With external GaN PAs, the 16-Element transceiver phased array demonstrates a measured 26° 3-dB beamwidth, +51dBm peak EIRP at Psat and the ability to scan to ±30° in all planes.

Original languageEnglish
Title of host publication2022 IEEE Symposium on VLSI Technology and Circuits, VLSI Technology and Circuits 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages128-129
Number of pages2
ISBN (Electronic)9781665497725
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event2022 IEEE Symposium on VLSI Technology and Circuits, VLSI Technology and Circuits 2022 - Honolulu, United States
Duration: 12 Jun 202217 Jun 2022

Publication series

NameDigest of Technical Papers - Symposium on VLSI Technology
Volume2022-June
ISSN (Print)0743-1562

Conference

Conference2022 IEEE Symposium on VLSI Technology and Circuits, VLSI Technology and Circuits 2022
Country/TerritoryUnited States
CityHonolulu
Period12/06/2217/06/22

Fingerprint

Dive into the research topics of 'A Packaged 90-to-96GHz 16-Element Phased Array with 18.8/15.8dBm Psat/OP1dB, 14.8% TX PAE in 65nm CMOS Process and +51dBm Array EIRP'. Together they form a unique fingerprint.

Cite this