A novel passive micromixer based on asymmetric split-and-recombine with fan-shaped cavity

Guodong Xia, Jian Li, Hongjie Wu, Mingzheng Zhou, Haiyan Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

A novel passive micromixer with fan-shaped cavity based on the principle of flow planar asymmetric split-and-recombine (P-ASAR) and focusing/diverging is designed. The micromixer consists of two split sub-channels with unequal widths and one fan-shaped cavity structure on the major sub-channel which are similar to a diamond ring structure. In order to yield optimum mixing effect, different parameters of geometry structure under a wide range of Reynolds numbers (1-80) have been investigated by numerical simulation with three-dimensional Navier-Stokes equations. The steady laminar flow was solved by using a finite-volume method and SIMPLE algorithm. Enhanced micromixing is achieved by utilizing a synergistic combination of unbalanced inertial collision, Dean vortices and expansion vortices. As a result of interplay between inertial, centrifugal and viscous effects, Dean vortices arise in the vertical plane of curved channel. Expansion vortices appear in the horizontal plane due to an abrupt increase of the cross-sectional area. The mixing index is used to evaluate the degree of mixing. Our studies show that vortices are observed in the channels at high Reynolds numbers. The geometry parameters of fan-shaped cavity structure affect the mixing index of micromixer. When the ratio of the widths of the major sub-channel and fan-shaped cavity channel is 1/3, the mixing index of this type micromixer could reach around 75% at Reynolds numbers larger than 60. The relation between mixing intensity and pump power consumption has been analyzed at a wide range of Reynolds numbers simultaneously.

Original languageEnglish
Title of host publicationASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011
Pages135-141
Number of pages7
DOIs
Publication statusPublished - 2011
Externally publishedYes
EventASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 - Edmonton, AB, Canada
Duration: 19 Jun 201122 Jun 2011

Publication series

NameASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011
Volume2

Conference

ConferenceASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011
Country/TerritoryCanada
CityEdmonton, AB
Period19/06/1122/06/11

Keywords

  • Asymmetric split-and-recombine
  • Fan-shaped cavity
  • Numerical simulation
  • Passive micromixer

Fingerprint

Dive into the research topics of 'A novel passive micromixer based on asymmetric split-and-recombine with fan-shaped cavity'. Together they form a unique fingerprint.

Cite this