A novel multiaxial three-dimensional woven preform: Process and structure

Xinmiao Wang, Li Chen*, Junshan Wang, Xintao Li, Zhongwei Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

A novel multiaxial three-dimensional woven preform and the weaving technique have been developed in this study. The preform exhibits remarkable designs, which is formed by multiple layers of different yarn sets, including bias (+bias/−bias), warp, and filling, and all layers are locked by Z-yarns These layers are arranged in a rectangular fashion and the layer number and the position of bias layer can be determined by the end-use requirements. A weaving process and machine are proposed to produce the preform. The weaving technique enables the insertion of many warp layers between two opposite bias layers. The microstructure of the preform was also studied. Microscopic evidence of the microstructure reveals that the cross-sections of Z-yarn are variable along its central axis due to the lateral compression forces of adjacent yarns from different directions. On the basis of microscopic observation, a unit cell geometry model of multiaxial three-dimensional woven preform is established, and a good agreement has been obtained between the theoretical and experimental values of the structural parameters of woven composite samples.

Original languageEnglish
Pages (from-to)247-266
Number of pages20
JournalJournal of Reinforced Plastics and Composites
Volume37
Issue number4
DOIs
Publication statusPublished - 1 Feb 2018
Externally publishedYes

Keywords

  • Multiaxial three-dimensional woven preform
  • microstructure analysis
  • process and machine
  • remarkable designs
  • weaving technique

Fingerprint

Dive into the research topics of 'A novel multiaxial three-dimensional woven preform: Process and structure'. Together they form a unique fingerprint.

Cite this