A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites

Deqi Yi*, Huixin Yang, Min Zhao, Le Huang, Giovanni Camino, Alberto Frache, Rongjie Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

A new, low surface charge density, anionically modified montmorillonite (MMT) has been prepared and its polyurethane nanocomposites are prepared. Their morphologies were studied using XRD, FTIR, SEM and EDS analysis, thermal stability by thermo-gravimetric analysis (TGA) and fire retardancy by cone calorimetry (CONE). Low surface charge density MMT forms due to conversion of [MgO6]- to [MgO5OH] and [AlO4]- to [AlO3OH] during the acidic treatment of MMT layers. Its anionic modification is related with pKa of modifier and pH of water solution by using Henderson-Hasselbalch equation. The low surface charge density MMT gives exfoliated nano-dispersion in PU, indicating that the dispersion of the MMT layers is not only decided by the organophilic surface, but also enhanced with a low surface charge density and electrostatic interaction between layers and counter ions. Low surface charge density MMT can enhance thermal stability and flame retardancy of PU with a small amount of anionic modifier, due to exfoliated nano-dispersion, and catalytic dehydrogenation and char formation. The large reduction in the THR for the sodium stearate modified low surface charge density MMT, SST-t-MMT, means that this material could be a solution for both fire risk and fire hazard.

Original languageEnglish
Pages (from-to)5980-5988
Number of pages9
JournalRSC Advances
Volume7
Issue number10
DOIs
Publication statusPublished - 2017

Fingerprint

Dive into the research topics of 'A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites'. Together they form a unique fingerprint.

Cite this