A Novel CNN-Based Method for Accurate Ship Detection in HR Optical Remote Sensing Images via Rotated Bounding Box

Linhao Li, Zhiqiang Zhou*, Bo Wang, Lingjuan Miao, Hua Zong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

75 Citations (Scopus)

Abstract

Currently, reliable and accurate ship detection in optical remote sensing images is still challenging. Even the state-of-the-art convolutional neural network (CNN)-based methods cannot obtain very satisfactory results. To more accurately locate the ships in diverse orientations, some recent methods conduct the detection via the rotated bounding box. However, it further increases the difficulty of detection because an additional variable of ship orientation must be accurately predicted in the algorithm. In this article, a novel CNN-based ship-detection method is proposed by overcoming some common deficiencies of current CNN-based methods in ship detection. Specifically, to generate rotated region proposals, current methods have to predefine multioriented anchors and predict all unknown variables together in one regression process, limiting the quality of overall prediction. By contrast, we are able to predict the orientation and other variables independently, and yet more effectively, with a novel dual-branch regression network, based on the observation that the ship targets are nearly rotation-invariant in remote sensing images. Next, a shape-adaptive pooling method is proposed to overcome the limitation of a typical regular region of interest (ROI) pooling in extracting the features of the ships with various aspect ratios. Furthermore, we propose to incorporate multilevel features via the spatially variant adaptive pooling. This novel approach, called multilevel adaptive pooling, leads to a compact feature representation more qualified for the simultaneous ship classification and localization. Finally, a detailed ablation study performed on the proposed approaches is provided, along with some useful insights. Experimental results demonstrate the great superiority of the proposed method in ship detection.

Original languageEnglish
Article number9103986
Pages (from-to)686-699
Number of pages14
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume59
Issue number1
DOIs
Publication statusPublished - Jan 2021

Keywords

  • Convolutional neural networks (CNNs)
  • dual-branch regression
  • multilevel features
  • ship detection

Fingerprint

Dive into the research topics of 'A Novel CNN-Based Method for Accurate Ship Detection in HR Optical Remote Sensing Images via Rotated Bounding Box'. Together they form a unique fingerprint.

Cite this