TY - GEN
T1 - A no-disturbance startup scheme for PMSM speed loop with auto-tuned current loop
AU - Cao, Yihui
AU - Wang, Junzheng
AU - Shen, Wei
N1 - Publisher Copyright:
© 2019 Technical Committee on Control Theory, Chinese Association of Automation.
PY - 2019/7
Y1 - 2019/7
N2 - Incremental encoder is commonly used for identifying the rotor position of a permanent-magnet synchronous motor (PMSM) in industrial applications. However, initial rotor position error exists when the conventional UVW algorithm is applied, thus uncertain disturbance occurs when Z-pulse correcting. In order to eliminate the preliminary identifying error and obtain the accurate rotor position immediately, a practical and efficient algorithm is proposed. In the proposed initial rotor identifying algorithm, the proper current vector is selected for each sector, and the accurate rotor position can be obtained in a movement of 60 electrical degrees in the worst case. A current loop auto-tuning method based on parameter estimation and frequency domain design is also proposed to construct a no-disturbance startup PMSM servo system for verifying the benefit of the proposed initial rotor identifying algorithm. Finally, comparative experiments between the conventional UVW algorithm and proposed initial rotor identifying algorithm in no-load and load case were conducted in TMS320F28335-based platform, which demonstrates the correctness and effectiveness of the proposed algorithms.
AB - Incremental encoder is commonly used for identifying the rotor position of a permanent-magnet synchronous motor (PMSM) in industrial applications. However, initial rotor position error exists when the conventional UVW algorithm is applied, thus uncertain disturbance occurs when Z-pulse correcting. In order to eliminate the preliminary identifying error and obtain the accurate rotor position immediately, a practical and efficient algorithm is proposed. In the proposed initial rotor identifying algorithm, the proper current vector is selected for each sector, and the accurate rotor position can be obtained in a movement of 60 electrical degrees in the worst case. A current loop auto-tuning method based on parameter estimation and frequency domain design is also proposed to construct a no-disturbance startup PMSM servo system for verifying the benefit of the proposed initial rotor identifying algorithm. Finally, comparative experiments between the conventional UVW algorithm and proposed initial rotor identifying algorithm in no-load and load case were conducted in TMS320F28335-based platform, which demonstrates the correctness and effectiveness of the proposed algorithms.
KW - Current loop auto-tuning
KW - Frequency domain design
KW - Initial rotor identifying
KW - Parameter estimation
UR - http://www.scopus.com/inward/record.url?scp=85074425513&partnerID=8YFLogxK
U2 - 10.23919/ChiCC.2019.8866231
DO - 10.23919/ChiCC.2019.8866231
M3 - Conference contribution
AN - SCOPUS:85074425513
T3 - Chinese Control Conference, CCC
SP - 3208
EP - 3213
BT - Proceedings of the 38th Chinese Control Conference, CCC 2019
A2 - Fu, Minyue
A2 - Sun, Jian
PB - IEEE Computer Society
T2 - 38th Chinese Control Conference, CCC 2019
Y2 - 27 July 2019 through 30 July 2019
ER -