TY - GEN
T1 - A method of removing Ocular Artifacts from EEG using Discrete Wavelet Transform and Kalman Filtering
AU - Chen, Yan
AU - Zhao, Qinglin
AU - Hu, Bin
AU - Li, Jianpeng
AU - Jiang, Hua
AU - Lin, Wenhua
AU - Li, Yang
AU - Zhou, Shuangshuang
AU - Peng, Hong
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2017/1/17
Y1 - 2017/1/17
N2 - Electroencephalogram (EEG) is a noninvasive method to record electrical activity of brain and it has been used extensively in research of brain function due to its high time resolution. However raw EEG is a mixture of signals, which contains noises such as Ocular Artifact (OA) that is irrelevant to the cognitive function of brain. To remove OAs from EEG, many methods have been proposed, such as Independent Components Analysis (ICA), Discrete Wavelet Transform (DWT), Adaptive Noise Cancellation (ANC) and Wavelet Packet Transform (WPT). In this paper, we present a novel hybrid de-noising method which uses Discrete Wavelet Transform (DWT) and Kalman Filtering to remove OAs in EEG. Firstly, we used this method on simulated data. The Mean Squared Error (MSE) of DWT-Kalman method was 0.0017, significantly lower compared to results using WPT-ICA and DWT-ANC, which were 0.0468 and 0.0052, respectively. Meanwhile, the Mean Absolute Error (MAE) using DWT-Kalman achieved an average of 0.0052, which also performed better than WPT-ICA and DWT-ANC, which were 0.0218 and 0.0115, respectively. Then we applied the proposed approach to the raw data collected by our prototype three-channel EEG collector and 64-channel Braincap from BRAIN PRODUCTS. On both data, our method achieved satisfying results. This method does not rely on any particular electrode or the number of electrodes in certain system, so it is recommended for ubiquitous applications.
AB - Electroencephalogram (EEG) is a noninvasive method to record electrical activity of brain and it has been used extensively in research of brain function due to its high time resolution. However raw EEG is a mixture of signals, which contains noises such as Ocular Artifact (OA) that is irrelevant to the cognitive function of brain. To remove OAs from EEG, many methods have been proposed, such as Independent Components Analysis (ICA), Discrete Wavelet Transform (DWT), Adaptive Noise Cancellation (ANC) and Wavelet Packet Transform (WPT). In this paper, we present a novel hybrid de-noising method which uses Discrete Wavelet Transform (DWT) and Kalman Filtering to remove OAs in EEG. Firstly, we used this method on simulated data. The Mean Squared Error (MSE) of DWT-Kalman method was 0.0017, significantly lower compared to results using WPT-ICA and DWT-ANC, which were 0.0468 and 0.0052, respectively. Meanwhile, the Mean Absolute Error (MAE) using DWT-Kalman achieved an average of 0.0052, which also performed better than WPT-ICA and DWT-ANC, which were 0.0218 and 0.0115, respectively. Then we applied the proposed approach to the raw data collected by our prototype three-channel EEG collector and 64-channel Braincap from BRAIN PRODUCTS. On both data, our method achieved satisfying results. This method does not rely on any particular electrode or the number of electrodes in certain system, so it is recommended for ubiquitous applications.
KW - Discrete wavelet transform
KW - EEG
KW - Kalman filtering
KW - Ocular artifacts
UR - http://www.scopus.com/inward/record.url?scp=85013249147&partnerID=8YFLogxK
U2 - 10.1109/BIBM.2016.7822742
DO - 10.1109/BIBM.2016.7822742
M3 - Conference contribution
AN - SCOPUS:85013249147
T3 - Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
SP - 1485
EP - 1492
BT - Proceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
A2 - Burrage, Kevin
A2 - Zhu, Qian
A2 - Liu, Yunlong
A2 - Tian, Tianhai
A2 - Wang, Yadong
A2 - Hu, Xiaohua Tony
A2 - Jiang, Qinghua
A2 - Song, Jiangning
A2 - Morishita, Shinichi
A2 - Burrage, Kevin
A2 - Wang, Guohua
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
Y2 - 15 December 2016 through 18 December 2016
ER -