A Joint Intrinsic-Extrinsic Prior Model for Retinex

Bolun Cai, Xianming Xu*, Kailing Guo, Kui Jia, Bin Hu, Dacheng Tao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

227 Citations (Scopus)

Abstract

We propose a joint intrinsic-extrinsic prior model to estimate both illumination and reflectance from an observed image. The 2D image formed from 3D object in the scene is affected by the intrinsic properties (shape and texture) and the extrinsic property (illumination). Based on a novel structure-preserving measure called local variation deviation, a joint intrinsic-extrinsic prior model is proposed for better representation. Better than conventional Retinex models, the proposed model can preserve the structure information by shape prior, estimate the reflectance with fine details by texture prior, and capture the luminous source by illumination prior. Experimental results demonstrate the effectiveness of the proposed method on simulated and real data. Compared with the other Retinex algorithms and state-of-the-art algorithms, the proposed model yields better results on both subjective and objective assessments.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4020-4029
Number of pages10
ISBN (Electronic)9781538610329
DOIs
Publication statusPublished - 22 Dec 2017
Externally publishedYes
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: 22 Oct 201729 Oct 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Conference

Conference16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period22/10/1729/10/17

Fingerprint

Dive into the research topics of 'A Joint Intrinsic-Extrinsic Prior Model for Retinex'. Together they form a unique fingerprint.

Cite this