A highly stable and flexible zeolite electrolyte solid-state Li–air battery

Xiwen Chi, Malin Li, Jiancheng Di, Pu Bai, Lina Song, Xiaoxue Wang, Fei Li, Shuang Liang, Jijing Xu*, Jihong Yu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

386 Citations (Scopus)

Abstract

Solid-state lithium (Li)–air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems1–4. However, conventional solid electrolytes are unsuitable for use in solid-state Li–air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li–air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li–air batteries confer practical applicability that could extend to other energy-storage systems, such as Li–ion, Na–air and Na–ion batteries.

Original languageEnglish
Pages (from-to)551-557
Number of pages7
JournalNature
Volume592
Issue number7855
DOIs
Publication statusPublished - 22 Apr 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'A highly stable and flexible zeolite electrolyte solid-state Li–air battery'. Together they form a unique fingerprint.

Cite this