A general approach based on Newton's method and cyclic coordinate descent method for solving the inverse kinematics

Yuhan Chen, Xiao Luo*, Baoling Han, Yan Jia, Guanhao Liang, Xinda Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The inverse kinematics of robot manipulators is a crucial problem with respect to automatically controlling robots. In this work, a Newton-improved cyclic coordinate descent (NICCD) method is proposed, which is suitable for robots with revolute or prismatic joints with degrees of freedom of any arbitrary number. Firstly, the inverse kinematics problem is transformed into the objective function optimization problem, which is based on the least-squares form of the angle error and the position error expressed by the product-of-exponentials formula. Thereafter, the optimization problem is solved by combining Newton's method with the improved cyclic coordinate descent (ICCD) method. The difference between the proposed ICCD method and the traditional cyclic coordinate descent method is that consecutive prismatic joints and consecutive parallel revolute joints are treated as a whole in the former for the purposes of optimization. The ICCD algorithm has a convenient iterative formula for these two cases. In order to illustrate the performance of the NICCD method, its simulation results are compared with the well-known Newton-Raphson method using six different robot manipulators. The results suggest that, overall, the NICCD method is effective, accurate, robust, and generalizable. Moreover, it has advantages for the inverse kinematics calculations of continuous trajectories.

Original languageEnglish
Article number5461
JournalApplied Sciences (Switzerland)
Volume9
Issue number24
DOIs
Publication statusPublished - 1 Dec 2019

Keywords

  • Cyclic coordinate descent method
  • General manipulators
  • Inverse kinematics
  • Newton's method
  • Numerical solution
  • Product-of-exponentials formula
  • Robotics

Fingerprint

Dive into the research topics of 'A general approach based on Newton's method and cyclic coordinate descent method for solving the inverse kinematics'. Together they form a unique fingerprint.

Cite this