A Dynamically Programmable Quantum Photonic Microprocessor for Graph Computation

Huihui Zhu, Haosen Chen, Shuyi Li, Tian Chen*, Yuan Li, Xianshu Luo, Feng Gao, Qiang Li, Linjie Zhou, Muhammad Faeyz Karim, Xiaopeng Shang, Fei Duan, Hong Cai, Lip Ket Chin*, Leong Chuan Kwek*, Xiangdong Zhang*, Ai Qun Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Quantum computing has grown extensively, especially in system design and development, and the current research focus has gradually evolved from validating quantum advantage to practical applications. In particular, nondeterministic-polynomial-time (NP)-complete problems are central in numerous important application areas. Still, in practice, it is difficult to solved efficiently with conventional computers, limited by the exponential jump in hardness. Here, a quantum photonic microprocessor based on Gaussian boson sampling (GBS) that offers dynamic programmability to solve various graph-related NP-complete problems is demonstrated. The system with optical, electrical, and thermal packaging implements a GBS with 16 modes of single-mode squeezed vacuum states, a universal programmable 16-mode interferometer, and a single photon readout on all outputs with high accuracy, generality, and controllability. The developed system is applied to demonstrate applications in solving NP-complete problems, manifesting the ability of photonic quantum computing to realize practical applications for conventionally intractable computations. The GBS-based quantum photonic microprocessor is applied to solve task assignment, Boolean satisfiability, graph clique, max cut, and vertex cover. These demonstrations suggest an excellent benchmarking platform, paving the way toward large-scale combinatorial optimization.

Original languageEnglish
Article number2300304
JournalLaser and Photonics Reviews
Volume18
Issue number2
DOIs
Publication statusPublished - Feb 2024

Keywords

  • graph-related NP-complete problems
  • integrated photonics
  • optical quantum computing

Fingerprint

Dive into the research topics of 'A Dynamically Programmable Quantum Photonic Microprocessor for Graph Computation'. Together they form a unique fingerprint.

Cite this