A Dual-Branch Dynamic Graph Convolution Based Adaptive TransFormer Feature Fusion Network for EEG Emotion Recognition

Mingyi Sun, Weigang Cui, Shuyue Yu, Hongbin Han, Bin Hu, Yang Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

Electroencephalograph (EEG) emotion recognition plays an important role in the brain-computer interface (BCI) field. However, most of recent methods adopted shallow graph neural networks using a single temporal feature, leading to the limited emotion classification performance. Furthermore, the existing methods generally ignore the individual divergence between different subjects, resulting in poor transfer performance. To address these deficiencies, we propose a dual-branch dynamic graph convolution based adaptive transformer feature fusion network with adapter-finetuned transfer learning (DBGC-ATFFNet-AFTL) for EEG emotion recognition. Specifically, a dual-branch graph convolution network (DBGCN) is firstly designed to effectively capture the temporal and spectral characterizations of EEG simultaneously. Second, the adaptive Transformer feature fusion network (ATFFNet) is conducted by integrating the obtained feature maps with the channel-weight unit, leading to significant difference between different channels. Finally, the adapter-finetuned transfer learning method (AFTL) is applied in cross-subject emotion recognition, which proves to be parameter-efficient with few samples of the target subject. The competitive experimental results on three datasets have shown that our proposed method achieves the promising emotion classification performance compared with the state-of-the-art methods. The code of our proposed method will be available at: https://github.com/smy17/DANet.

Original languageEnglish
Pages (from-to)2218-2228
Number of pages11
JournalIEEE Transactions on Affective Computing
Volume13
Issue number4
DOIs
Publication statusPublished - 2022
Externally publishedYes

Keywords

  • EEG
  • Transformer
  • emotion recognition
  • graph neural network
  • transfer learning

Fingerprint

Dive into the research topics of 'A Dual-Branch Dynamic Graph Convolution Based Adaptive TransFormer Feature Fusion Network for EEG Emotion Recognition'. Together they form a unique fingerprint.

Cite this