TY - JOUR
T1 - A deep network for tissue microstructure estimation using modified LSTM units
AU - Ye, Chuyang
AU - Li, Xiuli
AU - Chen, Jingnan
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/7
Y1 - 2019/7
N2 - Diffusion magnetic resonance imaging (dMRI) offers a unique tool for noninvasively assessing tissue microstructure. However, accurate estimation of tissue microstructure described by complicated signal models can be challenging when a reduced number of diffusion gradients are used. Deep learning based microstructure estimation has recently been developed and achieved promising results. In particular, optimization-based learning, where deep network structures are constructed by unfolding the iterative processes performed for solving optimization problems, has demonstrated great potential in accurate microstructure estimation with a reduced number of diffusion gradients. In this work, using the optimization-based learning strategy, we propose a deep network structure that is motivated by the use of historical information in iterative optimization for tissue microstructure estimation, and such incorporation of historical information has not been previously explored in the design of deep networks for microstructure estimation. We assume that (1) diffusion signals can be sparsely represented by a dictionary and its coefficients jointly in the spatial and angular domain, and (2) tissue microstructure can be computed from the sparse representation. Following these assumptions, our network comprises two cascaded stages. The first stage takes image patches as input and computes the spatial-angular sparse representation of the input with learned weights. Specifically, the network structure in the first stage is constructed by unfolding an iterative process for solving sparse reconstruction problems, where historical information is incorporated. The components in this network can be shown to correspond to modified long short-term memory (LSTM) units. In the second stage, fully connected layers are added to compute the mapping from the sparse representation to tissue microstructure. The weights in the two stages are learned jointly by minimizing the mean squared error of microstructure estimation. Experiments were performed on dMRI scans with a reduced number of diffusion gradients. For demonstration, we evaluated the estimation of tissue microstructure described by three signal models: the neurite orientation dispersion and density imaging (NODDI) model, the spherical mean technique (SMT) model, and the ensemble average propagator (EAP) model. The results indicate that the proposed approach outperforms competing methods.
AB - Diffusion magnetic resonance imaging (dMRI) offers a unique tool for noninvasively assessing tissue microstructure. However, accurate estimation of tissue microstructure described by complicated signal models can be challenging when a reduced number of diffusion gradients are used. Deep learning based microstructure estimation has recently been developed and achieved promising results. In particular, optimization-based learning, where deep network structures are constructed by unfolding the iterative processes performed for solving optimization problems, has demonstrated great potential in accurate microstructure estimation with a reduced number of diffusion gradients. In this work, using the optimization-based learning strategy, we propose a deep network structure that is motivated by the use of historical information in iterative optimization for tissue microstructure estimation, and such incorporation of historical information has not been previously explored in the design of deep networks for microstructure estimation. We assume that (1) diffusion signals can be sparsely represented by a dictionary and its coefficients jointly in the spatial and angular domain, and (2) tissue microstructure can be computed from the sparse representation. Following these assumptions, our network comprises two cascaded stages. The first stage takes image patches as input and computes the spatial-angular sparse representation of the input with learned weights. Specifically, the network structure in the first stage is constructed by unfolding an iterative process for solving sparse reconstruction problems, where historical information is incorporated. The components in this network can be shown to correspond to modified long short-term memory (LSTM) units. In the second stage, fully connected layers are added to compute the mapping from the sparse representation to tissue microstructure. The weights in the two stages are learned jointly by minimizing the mean squared error of microstructure estimation. Experiments were performed on dMRI scans with a reduced number of diffusion gradients. For demonstration, we evaluated the estimation of tissue microstructure described by three signal models: the neurite orientation dispersion and density imaging (NODDI) model, the spherical mean technique (SMT) model, and the ensemble average propagator (EAP) model. The results indicate that the proposed approach outperforms competing methods.
KW - Deep network
KW - LSTM
KW - Sparse coding
KW - Tissue microstructure
UR - http://www.scopus.com/inward/record.url?scp=85064493101&partnerID=8YFLogxK
U2 - 10.1016/j.media.2019.04.006
DO - 10.1016/j.media.2019.04.006
M3 - Article
C2 - 31022640
AN - SCOPUS:85064493101
SN - 1361-8415
VL - 55
SP - 49
EP - 64
JO - Medical Image Analysis
JF - Medical Image Analysis
ER -