Abstract
A permutation whose any prefix has no more descents than ascents is called a ballot permutation. In this paper, we present a decomposition of ballot permutations that enables us to construct a bijection between ballot permutations and odd order permutations, which proves a set-valued extension of a conjecture due to Spiro using the statistic of peak values. This bijection also preserves the neighbors of the largest letter in permutations and thus resolves a refinement of Spiro's conjecture proposed by Wang and Zhang. Our decomposition can be extended to well-labeled positive paths, a class of generalized ballot permutations arising from polytope theory, that were enumerated by Bernardi, Duplantier and Nadeau. We will also investigate the enumerative aspect of ballot permutations avoiding a single pattern of length 3 and establish a connection between 213-avoiding ballot permutations and Gessel walks.
Original language | English |
---|---|
Article number | 105644 |
Journal | Journal of Combinatorial Theory. Series A |
Volume | 191 |
DOIs | |
Publication status | Published - Oct 2022 |
Keywords
- Ballot permutations
- Gessel walks
- Odd cycles
- Pattern avoidance
- Peak values