Abstract
Refreshing the record of the electrocatalytic activity for bifunctional oxygen electrocatalysis is the first priority of developing next-generation rechargeable zinc-air batteries. A ΔE indicator to evaluate the bifunctional electrocatalytic activity has stagnated with a record of ΔE > 0.60 V for decades. Herein, a bifunctional oxygen electrocatalyst is developed to afford an ultrahigh bifunctional electrocatalytic activity of ΔE = 0.57 V and realize high-performance rechargeable zinc-air batteries. Specifically, atomically dispersed Fe-N-C sites and NiFeCe layered double hydroxides are integrated to afford a composite FeNC@LDH electrocatalyst, following the guidance of the data-driven analysis. The FeNC@LDH electrocatalyst demonstrates a record-breaking electrocatalytic activity of ΔE = 0.57 V, far exceeding the state-of-the-art level by ca. 60 mV. Practical ampere-hour-scale zinc-air batteries are constructed with a capacity of 6.4 Ah and cycle under 1.0 A and 1.0 Ah conditions. This work affords a record-breaking bifunctional electrocatalyst for ampere-hour-scale zinc-air batteries in future application scenarios.
Original language | English |
---|---|
Journal | Joule |
DOIs | |
Publication status | Accepted/In press - 2024 |
Keywords
- bifunctional oxygen electrocatalysts
- energy electrocatalysis
- oxygen evolution reaction
- oxygen reduction reaction
- zinc-air batteries