Abstract
Monodispersed mesoporous hollow spheres of polymer-silica and carbon-silica nanocomposites with an "interpenetration twin" nanostructure have been successfully synthesized by a co-sol-emulsion-gel method. The obtained mesoporous hollow carbon spheres (MHCSs) exhibited an open interconnected mesoporous shell that is endowed with high specific surface area (SBET, 2106-2225 m2 g-1) and large pore volume (1.95-2.53 cm3 g-1). Interestingly, the diameter of the uniform MHCSs could be precisely tuned on demand, as an effective electrode material in supercapacitors, MHCSs with a diameter of 90 nm deliver the shortest time constant (τ0 = 0.75 s), which is highly beneficial for rate capacitance (180 F g-1 at 100 A g-1, a full charge-discharge within 0.9 s) and cyclic retainability (3% loss after 20 000 cycles). The newly developed synthesis route leads to unique interconnected mesoporous hollow carbonaceous spheres with open-framework structures, providing a new material platform in energy storage.
Original language | English |
---|---|
Pages (from-to) | 451-457 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jan 2016 |