Abstract
Under the background of “double carbon”, building carbon emission reduction is urgent, and improving energy efficiency through short-term building heat load forecasting is an efficient means of building carbon emission reduction. Aiming at the characteristics of the decomposed short-term building heat load data, such as complex trend changes, significant seasonal changes, and randomness, a single-step short-term building heat load prediction method driven by the multi-component fusion LSTM Ridge Regression Ensemble Model (ST-LSTM-RR) is designed and implemented. First, the trend and seasonal components of the heat load are decomposed by the STL seasonal decomposition algorithm, which are fused into the original data to construct three diversified datasets; second, three basic models, namely, the trend LSTM, the seasonal LSTM, and the original LSTM, are trained; and then, the ridge regression model is trained to fuse the predicted values of the three basic models to obtain the final predicted values. Finally, the method of this paper is applied to the heat load prediction of eight groups in a large mountain hotel park, and the root mean square error (RMSE) and mean absolute error (MAE) are used as the evaluation indexes. The experimental results show that the average RMSE and average MAE of the prediction results of the proposed method in this paper are minimized on the eight groups.
Original language | English |
---|---|
Article number | 3810 |
Journal | Applied Sciences (Switzerland) |
Volume | 14 |
Issue number | 9 |
DOIs | |
Publication status | Published - May 2024 |
Externally published | Yes |
Keywords
- building heat load prediction
- ensemble deep learning
- long short-term memory neural network
- ridge regression
- seasonal and trend decomposition using LOESS