3D ARCNN: An Asymmetric Residual CNN for Decreasing False Positive Rate of Lung Nodules Detection

Bowen Liu, Hong Song*, Qiang Li, Yucong Lin*, Jian Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Lung cancer is with the highest morbidity and mortality, and early detection of cancerous changes is essential to reduce the risk of death. To achieve this, it is necessary to reduce the false positive rate of detection. In this paper, we propose a novel asymmetric residual network, called 3D ARCNN, to reduce false positive rate of lung nodules detection. 3D ARCNN consists of asymmetric convolutional and multilayer cascaded residual network structures. To solve the problem of deep neural network with large amounts of parameters and poor reproduction ability, the proposed model uses asymmetric convolution to reduce model parameters and enhance the generalization ability of the model. In addition, the model uses an internally cascaded multi-stage residual to prevent the gradient vanishing and exploding problems of deep networks. Experiments are performed on the public dataset LUNA16. Our method achieved high detection sensitivity of 91.6%, 92.7%, 93.2% and 95.8% at 1, 2, 4 and 8 false positives per scan, respectively, which got an average CPM index of 0.912. Experimental results show that the proposed 3D ARCNN is very useful for reducing the false positive rate of lung nodules in the clinic.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
EditorsDonald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1644-1647
Number of pages4
ISBN (Electronic)9781665468190
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, United States
Duration: 6 Dec 20228 Dec 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022

Conference

Conference2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Country/TerritoryUnited States
CityLas Vegas
Period6/12/228/12/22

Keywords

  • Asymmetric convolution
  • False positive reduction
  • Multi-layer cascade
  • Residual network

Fingerprint

Dive into the research topics of '3D ARCNN: An Asymmetric Residual CNN for Decreasing False Positive Rate of Lung Nodules Detection'. Together they form a unique fingerprint.

Cite this