1T-VS2@V2O3 Synergistic Nanoarchitecture-Based Lamellar Clusters as the High Conductivity Cathodes of Thermal Batteries

Xin Ya Bu, Yan Li Zhu*, Cong Jie Wang, Wei Li, Yu Xia, Yong Zhao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Thermal batteries are solid-state, thermally activated batteries with long storage times and high reliability. FeS2 is used as a cathode material commonly, but the high internal resistance and low voltage platform limit the improvement of battery performance. Herein, the 1T-phase vanadium disulfide (VS2) is prepared via the scalable hydrothermal method and applied to thermal battery cathode materials for the first time. 1T-VS2 lamellar flower clusters have high electronic conductivity (1.583 S cm-1) at room temperature, which is 75 times higher than FeS2 (0.021 S cm-1). Mechanism analysis shows that 1T-VS2@V2O3 can be formed based on the part of 1T-VS2 being oxidized to V2O3 at the discharge temperature. Benefiting from the synergistic effect of vanadium sulfide and vanadium oxide as a cathode for thermal batteries enhanced specific capacity (292.4 mA h g-1) and mass energy density (572.5 W h kg-1) when cutoff voltage is 1 V. Additionally, the discharge results indicate that the cells utilizing 1T-VS2 cathodes provided a higher voltage platform of 2.11 V than 1.84 V for FeS2. This impressive work can offer a good strategy for boosting cathode materials for a high-performance thermal battery.

Original languageEnglish
Pages (from-to)7200-7210
Number of pages11
JournalACS applied materials & interfaces
Volume16
Issue number6
DOIs
Publication statusPublished - 14 Feb 2024

Keywords

  • 1T-VS
  • cathode
  • high conductivity
  • high energy density
  • thermal battery

Fingerprint

Dive into the research topics of '1T-VS2@V2O3 Synergistic Nanoarchitecture-Based Lamellar Clusters as the High Conductivity Cathodes of Thermal Batteries'. Together they form a unique fingerprint.

Cite this