Abstract
The annular shaped charges serve as the precursor of a tandem warhead, prized for its ability to create large diameter perforation in targets. In an effort to enhance the penetration capacity of the annular shaped charge jet and mitigate the impact of the inner casing on subsequent sections induced by a reversed penetrator, a novel approach was taken to implement the investigation. Four different combinations of inner and outer casing materials based on steel and aluminum alloy were explored. It was found that when the inner casing was made of aluminum alloy, the average penetration depth in the rear target was 36.13% lower than that when the inner casing was made of steel. Selecting an inner casing of aluminum alloy and an outer casing of steel, the effects of tip offset, liner thickness, and standoff distance on the formation and penetration characteristics of the annular jet were further investigated. The results show that the jet formed by the non-eccentric liner exhibits radial offset, negatively influencing its penetration capability. However, by offsetting the liner tip to the outer side by 0.05d (where d represents the radial thickness of the annular shaped charge), both the forming and penetration performances of the jet are significantly improved. In addition, as the liner thickness increases, the velocity of the jet tip gradually decreases. Notably, the annular jet formed by an eccentric conical liner with a thickness of 0.045d exhibits superior penetration performance. Furthermore, the standoff distance emerges as a critical factor influencing the penetration capability of the annular jet. Optimal performance is achieved at a standoff distance of 1.12d. Under the same scenario, jet penetration tests were implemented. The difference between the radius of the penetration tunnel from numerical and experimental study lies within 12%. Subsequently, the reliability of the numerical simulation model and the conclusions are verified.
Translated title of the contribution | Analysis of influencing factors on formation and penetration capabilities of asymmetric hollow annular shaped charge |
---|---|
Original language | Chinese (Traditional) |
Journal | Baozha Yu Chongji/Expolosion and Shock Waves |
Volume | 45 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2025 |