Abstract
In order to obtain the damage data of reinforced concrete targets subjected to high-velocity impact of kinetic-energy projectiles, based on the large-caliber launch platform, penetration experiments were carried out by applying 100-mm-caliber oval projectiles with high velocity penetrating into reinforced concrete targets. The projectile mass is 5.4 kg, and the target dimensions have two kinds: 2 m × 2 m × 1.25 m and 2 m × 2 m × 1.50 m. The compressive strength of the concrete is 50 MPa, and the penetration velocity of the projectile ranges from 1 345 to 1 384 m/s. The penetration depths of the projectiles and the damage data of the reinforced concrete targets were obtained by the experiment. The reinforced concrete target model was established through the reinforced concrete all solid hexahedral separation common node modeling. The numerical simulation was then carried out by this modeling method combined with the Riedel-Hiermaier- Thoma constitutive model. Numerical simulation results display the variation and distribution of the tensile and compressive stresses in the steel bars in the penetration process. The reverse stretching phenomenon of the rebar mesh near the front surface and the tensile phenomenon of the rebar mesh near the rear surface are perfectly simulated by this method. The simulated penetration depth and the damage phenomenon of the reinforced concrete are in good agreement with the experimental results. It proves the reliability of the reinforced concrete all solid hexahedral separation common node modeling.
Translated title of the contribution | Experimental and numerical study on projectiles' high-velocity penetration into reinforced concrete |
---|---|
Original language | Chinese (Traditional) |
Article number | 103301 |
Journal | Baozha Yu Chongji/Expolosion and Shock Waves |
Volume | 39 |
Issue number | 10 |
DOIs | |
Publication status | Published - 5 Oct 2019 |