TY - JOUR
T1 - 三体轨道动力学研究进展
AU - Li, Xiangyu
AU - Qiao, Dong
AU - Cheng, Yu
N1 - Publisher Copyright:
© 2021, Chinese Journal of Theoretical and Applied Mechanics Press. All right reserved.
PY - 2021/5/18
Y1 - 2021/5/18
N2 - The orbital dynamics in the three-body system is a classical problem in the field of astrodynamics. It has rich theoretical and engineering significance, and have played an important role in the process of space activities extending from near-earth space to deep space. This paper reviews and summarizes the progress of the study of orbital dynamics in the three-body system. Combined with the development trend of deep space exploration in the future, the hotspots and challenges in the research of three-body orbital dynamics are prospected. First, the research background and significance of the three-body problem are surveyed, and the development of the dynamics model of the three-body system is briefly reviewed. Secondly, characteristics of the local motion near the equilibrium point in the three-body problem are systematically summarized. The analytical and numerical methods for periodic orbits are introduced. The latest development of quasi-periodic motion is discussed. Meanwhile, the characteristics and research progress of global periodic motions in the three-body system including resonance orbits, cycler trajectories, and free return orbits are summarized. Next, the research progress of the low-energy transfer and capture trajectory design in the three-body system is analyzed from two aspects of invariant manifold theory and weak stability boundary theory. Finally, the applications of orbital dynamics in the three-body system in formation flight and navigation constellation design are summarized. Several orbital dynamics and control problems in the design of landing trajectories for full lunar-surface coverage, the low thrust orbit optimization of the three-body system, and the utilization of non-linear equilibrium points in the three-body system are addressed for future study.
AB - The orbital dynamics in the three-body system is a classical problem in the field of astrodynamics. It has rich theoretical and engineering significance, and have played an important role in the process of space activities extending from near-earth space to deep space. This paper reviews and summarizes the progress of the study of orbital dynamics in the three-body system. Combined with the development trend of deep space exploration in the future, the hotspots and challenges in the research of three-body orbital dynamics are prospected. First, the research background and significance of the three-body problem are surveyed, and the development of the dynamics model of the three-body system is briefly reviewed. Secondly, characteristics of the local motion near the equilibrium point in the three-body problem are systematically summarized. The analytical and numerical methods for periodic orbits are introduced. The latest development of quasi-periodic motion is discussed. Meanwhile, the characteristics and research progress of global periodic motions in the three-body system including resonance orbits, cycler trajectories, and free return orbits are summarized. Next, the research progress of the low-energy transfer and capture trajectory design in the three-body system is analyzed from two aspects of invariant manifold theory and weak stability boundary theory. Finally, the applications of orbital dynamics in the three-body system in formation flight and navigation constellation design are summarized. Several orbital dynamics and control problems in the design of landing trajectories for full lunar-surface coverage, the low thrust orbit optimization of the three-body system, and the utilization of non-linear equilibrium points in the three-body system are addressed for future study.
KW - Capture trajectory
KW - Orbital dynamics
KW - Periodic motion
KW - Three-body problem
KW - Transfer trajectory
UR - http://www.scopus.com/inward/record.url?scp=85107386346&partnerID=8YFLogxK
U2 - 10.6052/0459-1879-20-367
DO - 10.6052/0459-1879-20-367
M3 - 文献综述
AN - SCOPUS:85107386346
SN - 0459-1879
VL - 53
SP - 1223
EP - 1245
JO - Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
JF - Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics
IS - 5
ER -