Jiangwei Shang

Calculated based on number of publications stored in Pure and citations from Scopus
20122024

Research activity per year

Personal profile

Personal profile

Title: Researcher/Associate Professor
Contact number:
Department: Theoretical Physics
E-mail: jiangwei.shang[AT]bit.edu.cn
Address: School of Physics, Beijing Institute of Technology, Haidian District, Beijing, China; A414, School of Physics, Beijing Institute of Technology, Fangshan District, Beijing

Research Interests

Quantum information and quantum computing mainly include quantum chromatography, quantum verification, quantum measurement, determination and measurement of quantum entanglement, non-local correlation, algorithm research, etc.

Education

2010.07-2014.02 Research Center for Quantum Technology, National University of Singapore, PhD; Tutor: Prof. Berthold-Georg Englert
2008.08-2008.12, Department of Physics, University of California, Santa Barbara, USA, Exchange Visit
2006.08-2010.06 Bachelor of Science (First Class Honours), Department of Physics, National University of Singapore

Professional Experience

07/2022.-Present Research Fellow/Associate Professor, School of Physics, Beijing Institute of Technology
2018.01 -- 2022.06 Associate Researcher/Pre-Appointed Assistant Professor, School of Physics, Beijing Institute of Technology
2016.11-2017.12 Postdoctoral Researcher, University of Siegen, Germany; Co-supervisor: Prof. Dr. Otfried Guhne
2014.02-2016.10 Postdoctoral Researcher, Quantum Science Research Center, National University of Singapore; Co-supervisor: Prof. Berthold-Georg Englert

Research Achievement

Google Scholar: https://scholar.google.com/citations?hl=en&user=Ur3D0GIAAAAJ
近期代表性论文:
[1] Y. Li and J. Shang, “Geometric mean of bipartite concurrences as a genuine multipartite entnaglement measure,” Phys. Rev. Research 4, 023059 (2022).
[2] X. Yan, Y.-C. Liu, and J. Shang, “Operational detection of entanglement via quantum designs,” Ann. Phys. (Berlin) 534, 2100594 (2022).
[3] X.-D. Yu, J. Shang, and O. Gühne, “Statistical methods for quantum state verification and fidelity estimation,” Adv. Quantum Technol. 5, 2100126 (2022). (Invited Review)
[4] Q. Zeng, J. Shang, H. C. Nguyen, and X. Zhang, “Reliable experimental certification of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Research 4, 013151 (2022).
[5] R.-Q. Zhang, Z. Hou, J.-F. Tang, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Efficient experimental verification of quantum gates with local operations,” Phys. Rev. Lett. 128, 020502 (2022). (Editors' Suggestion)
[6] Y.-C. Liu, Y. Li, J. Shang, and X. Zhang, “Verification of arbitrary entangled states with homogeneous local measurements,” arXiv:2208.01083.
[7] W. Li, R. Han, J. Shang, H. K. Ng, and B.-G. Englert, “Sequentially constrained Monte Carlo sampler for quantum states,” arXiv:2109.14215.
[8] Y.-C. Liu, J. Shang, and X. Zhang, “Efficient verification of entangled continous-variable quantum states with local measurements,” Phys. Rev. Research 3, L042004 (2021). (Letter)
[9] Y.-C. Liu, J. Shang, R. Han, and X. Zhang, “Universally optimal verification of entangled states with nondemolition measurements,” Phys. Rev. Lett. 126, 090504 (2021).
[10] Z. Li, Y.-G. Han, H.-F. Sun, J. Shang, and H. Zhu, “Verification of phased Dicke states,” Phys. Rev. A 103, 022601 (2021).
[11] Y.-C. Liu, J. Shang, X.-D. Yu, and X. Zhang, “Efficient verification of quantum processes,” Phys. Rev. A 101, 042315 (2020).
[12] J.-F. Tang, Z. Hou, J. Shang, H. Zhu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Experimental optimal orienteering via parallel and antiparallel spins,” Phys. Rev. Lett. 124, 060502 (2020).
[13] X.-D. Yu, J. Shang, and O. Gühne, “Optimal verification of general bipartite pure states,” npj Quantum Inf. 5, 112 (2019).
[14] Y.-C. Liu, X.-D. Yu, J. Shang, H. Zhu, and X. Zhang, “Efficient verification of Dicke states,” Phys. Rev. Applied 12, 044020 (2019).
[15] J. Y. Sim, J. Shang, H. K. Ng, and B.-G. Englert, “Proper error bars for self-calibrating quantum tomography,” Phys. Rev. A 100, 022333 (2019).
[16] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne, “Quantifying quantum resources with conic programming,” Phys. Rev. Lett. 122, 130404 (2019).
[17] G. Sentís, J. N. Greiner, J. Shang, J. Siewert, and M. Kleinmann, “Bound entangled states fit for robust experimental verification,” Quantum 2, 113 (2018).
[18] J. Shang, A. Asadian, H. Zhu, and O. Gühne, “Enhanced entanglement criterion via symmetric informationally complete measurements,” Phys. Rev. A 98, 022309 (2018). (Editors' Suggestion)
[19] J. Shang and O. Gühne, “Convex optimization over classes of multiparticle entanglement,” Phys. Rev. Lett. 120, 050506 (2018).
[20] Z. Hou, J.-F. Tang, J. Shang, H. Zhu, J. Li, Y. Yuan, K.-D. Wu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Deterministic realization of collective measurements via photonic quantum walks,” Nature Commun. 9, 1414 (2018).
[21] J. Shang, Z. Zhang, and H. K. Ng, “Superfast maximum-likelihood reconstruction for quantum tomography,” Phys. Rev. A 95, 062336 (2017).

Fingerprint

Dive into the research topics where Jiangwei Shang is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or