Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery

Shutao Guo, Yuanyu Huang, Wendi Zhang, Weiwei Wang, Tuo Wei, Daoshu Lin, Jinfeng Xing, Liandong Deng, Quan Du, Zicai Liang, Xing Jie Liang, Anjie Dong*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

82 引用 (Scopus)

摘要

Binary complexes of cationic polymers and DNA were used commonly for DNA delivery, whereas, the excess cationic charge of the binary complexes mainly leads to high toxicity and unstability in vivo. In this paper, ternary complexes by coating polyglutamic acid-graft-poly(ethylene glycol)(PGA-g-mPEG) onto binary complexes of polycaprolactone-graft-poly(N,N-dimethylaminoethyl methacrylate) (PCL-g-PDMAEMA) nanoparticles (NPs)/DNA were firstly developed for effective and targeted gene delivery. The coating of PGA-g-mPEG was able to decrease the zeta potential of the nano-sized DNA complexes nearly to electroneutrality without interferring with DNA condensation ability. As a result, the stability, the escape ability from endosomes and the transfection efficiency of the complexes were enhanced. The ternary complexes of PCL-g-PDMAEMA NPs/DNA/PGA-g-mPEG demonstrated lower cytotoxicity in CCK-8 measurements and higher gene transfection efficiency than the binary complexes in vitro. In addition, Lactate dehydrogenase (LDH) assay was performed to quantify the membrane-damaging effects of the complexes, which is consistent with the conclusion of CCK-8 measurement for cytotoxicity assay. The in vivo imaging measurement and histochemical analysis of tumor sessions confirmed that the intravenous administration of the ternary complexes with red fluorescent protein (RFP) as payload led to protein expression in tumor, which was further enhanced by the targeted coating of PGA-g-PEG-folate.

源语言英语
页(从-至)4283-4292
页数10
期刊Biomaterials
32
18
DOI
出版状态已出版 - 6月 2011
已对外发布

指纹

探究 'Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery' 的科研主题。它们共同构成独一无二的指纹。

引用此