摘要
Silicon is the most promising high capacity anode material to replace graphite for developing next generation high energy density Li-ion batteries. In this approach, patterned amorphous and microcrystalline Si thin film electrodes (a-Si and μc-Si) have been prepared by rf-sputtering and etched further by a reactive ion etching (RIE) system to form square-shape microcolumn electrodes with controllable size (5 × 5 μm width, 500 nm height, aspect ratio of width/height is 10:1) and array distance (5 μm). It has been found that the volume expansion and contraction of a-Si and μc-Si are anisotropic, about 180% along vertical direction and 40% along lateral direction. The total volume variation changes linearly with the increase of lithium insertion content up to ∼310% for a-Si and ∼300% for μc-Si. It occurs nearly reversibly. In addition, it is observed that the original square-shape Si column transforms into the dome-like appearance after lithium insertion and changes into bowl shape after lithium extraction gradually. Radial-like curved cracks are formed after 5-10 cycles and the neighboring Si columns tend to merge together when the distance of the columns is less than 1 μm.
源语言 | 英语 |
---|---|
页(从-至) | 131-138 |
页数 | 8 |
期刊 | Journal of Power Sources |
卷 | 216 |
DOI | |
出版状态 | 已出版 - 15 10月 2012 |
已对外发布 | 是 |