Secondary instabilities of Görtler vortices in high-speed boundary layer flows

Jie Ren, Song Fu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

95 引用 (Scopus)

摘要

Görtler vortices developed in laminar boundary layer experience remarkable changes when the flow is subjected to compressibility effects. In the present study, five Ma numbers, covering incompressible to hypersonic flows, at Ma = 0.015, 1.5, 3.0, 4.5 and 6.0 are specified to illustrate these effects. Görtler vortices in subsonic and moderate supersonic flows (Ma = 0.015, 1.5 and 3.0) are governed by the conventional wall-layer mode (mode W). In hypersonic flows (Ma = 4.5, 6.0), the trapped-layer mode (mode T) becomes dominant. This difference is maintained and intensifies downstream leading to different scenarios of secondary instabilities. The linear and nonlinear development of Görtler vortices which are governed by dominant modal disturbances are investigated with direct marching of the nonlinear parabolic equations. The secondary instabilities of Görtler vortices set in when the resulting streaks are adequately developed. They are studied with Floquet theory at multiple streamwise locations. The secondary perturbations become unstable downstream following the sequence of sinuous mode type I, varicose mode and sinuous mode type II, indicating an increasing threshold amplitude. Onset conditions are determined for these modes. The above three modes can each have the largest growth rate under the right conditions. In the hypersonic cases, the threshold amplitude A(u) is dramatically reduced, showing the significant impact of the thermal streaks. To investigate the parametric effect of the spanwise wavenumber, three global wavenumbers (B = 0.5, 1.0 and 2.0 × 10-3) are specified. The relationship between the dominant mode (sinuous or varicose) and the spanwise wavenumber of Görtler vortices found in incompressible flows (Li & Malik, J. Fluid Mech., vol. 297, 1995, pp. 77-100) is shown to be not fully applicable in high-speed cases. The sinuous mode becomes the most dangerous, regardless of the spanwise wavelength when Ma > 3.0. The subharmonic type can be the most dangerous mode while the detuned type can be neglected, although some of the sub-dominant secondary modes reach their peak growth rates under detuned states.

源语言英语
页(从-至)388-421
页数34
期刊Journal of Fluid Mechanics
781
DOI
出版状态已出版 - 2015
已对外发布

指纹

探究 'Secondary instabilities of Görtler vortices in high-speed boundary layer flows' 的科研主题。它们共同构成独一无二的指纹。

引用此