Reliable and Privacy-Preserving Truth Discovery for Mobile Crowdsensing Systems

Chuan Zhang, Liehuang Zhu*, Chang Xu*, Ximeng Liu, Kashif Sharif

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

88 引用 (Scopus)

摘要

Truth discovery has received considerable attention in mobile crowdsensing systems. In real practice, it is vital to resolve conflicts among a large amount of sensory data and estimate the truthful information. Although truth discovery has been widely explored to improve aggregation accuracy, numerous security and privacy issues still need to be addressed. Existing schemes either do not guarantee the privacy of each participating user, or fail to consider practical needs in crowdsensing systems. In this paper, we present two reliable and privacy-preserving truth discovery schemes for different scenarios. Our first design is fit for applications where users are relatively stable. By employing the homomorphic Paillier encryption, one-way hash chain, and super-increasing sequence techniques, this approach not only guarantees strong privacy, but also is highly efficient and practical. Our second design suits applications where users are frequently moving. In such an application, we explore data perturbation and homomorphic Paillier encryption to shift all user workloads to the server side, without compromising users' privacy. Through detailed security analysis, we demonstrate that both schemes are secure, practical, and privacy-preserving. Moreover, extensive experiments based on real world and simulated mobile crowdsensing systems, we demonstrate the efficiency of our proposed schemes.

源语言英语
文章编号8723639
页(从-至)1245-1260
页数16
期刊IEEE Transactions on Dependable and Secure Computing
18
3
DOI
出版状态已出版 - 1 5月 2021

指纹

探究 'Reliable and Privacy-Preserving Truth Discovery for Mobile Crowdsensing Systems' 的科研主题。它们共同构成独一无二的指纹。

引用此