Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloy

S. Guan, K. Solberg, D. Wan, F. Berto, T. Welo, T. M. Yue, K. C. Chan*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

56 引用 (Scopus)

摘要

In this work, the non-equiatomic high entropy alloy AlCoCrFeNiTi0.5 was additively manufactured via the laser engineered net shaping (LENS™) process. Contrary to the columnar grain microstructure commonly observed in previously reported alloys, the as-deposited AlCoCrFeNiTi0.5 specimens exhibit a fully equiaxed grain microstructure in a wide range of temperature gradients G (85 to 1005 K/mm) and solidification velocities V (5 to 20 mm/s). The main microstructural characteristics were found to be B2-structured proeutectic dendrites delineated by lamellar or rod-like B2/A2 eutectic structures. The formation of this microstructural feature can be discussed with the aid of Scheil's solidification model. The proeutectic B2-structured dendrites were frequently found to be fragmented, which may provide profuse effective nucleation sites, and hence promote equiaxed grain formation. Furthermore, we estimated the volume fraction ϕ values of equiaxed crystals at solidification front for various G - V combinations established in this paper, which can provide a theoretical basis for our experimental findings. The current work provides guidelines for producing fully equiaxed alloys by the additive manufacturing (AM) process.

源语言英语
文章编号108202
期刊Materials and Design
184
DOI
出版状态已出版 - 15 12月 2019
已对外发布

指纹

探究 'Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloy' 的科研主题。它们共同构成独一无二的指纹。

引用此