Distributed sampled-data control of Kuramoto–Sivashinsky equation

Wen Kang*, Emilia Fridman

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

63 引用 (Scopus)

摘要

The paper is devoted to distributed sampled-data control of nonlinear PDE system governed by 1-D Kuramoto–Sivashinsky equation. It is assumed that N sensors provide sampled in time spatially distributed (either point or averaged) measurements of the state over N sampling spatial intervals. Locally stabilizing sampled-data controllers are designed that are applied through distributed in space shape functions and zero-order hold devices. Given upper bounds on the sampling intervals in time and in space, sufficient conditions ensuring regional exponential stability of the closed-loop system are established in terms of Linear Matrix Inequalities (LMIs) by using the time-delay approach to sampled-data control and Lyapunov–Krasovskii method. As it happened in the case of diffusion equation, the descriptor method appeared to be an efficient tool for the stability analysis of the sampled-data Kuramoto–Sivashinsky equation. An estimate on the domain of attraction is also given. A numerical example demonstrates the efficiency of the results.

源语言英语
页(从-至)514-524
页数11
期刊Automatica
95
DOI
出版状态已出版 - 9月 2018
已对外发布

指纹

探究 'Distributed sampled-data control of Kuramoto–Sivashinsky equation' 的科研主题。它们共同构成独一无二的指纹。

引用此