摘要
Lithium is thought to be an excellent anode material for next-generation Li metal batteries (LMBs). However, some problems with lithium anodes often lead to serious safety concerns and catastrophic failures due to the huge volume change, Li dendritic growth, and related side reactions. Therefore, in order to manufacture stable rechargeable batteries, the abovementioned serious problems must be effectively solved. In this paper, a three-dimensional N,P-doped silicon-containing lithium anode is designed and prepared by in situ metallurgy using low-cost Si3N4. The 3D stable composite anode (DLi/LiSix CA) was prepared by adding a small amount of Si3N4 to molten lithium to form N-doped silicon-containing lithium metal which was supported on a polyaniline modified carbon cloth (PMCC). The results show that the DLi/LiSix CA not only has high Li affinity but can also effectively inhibit lithium nucleation and lithium dendritic growth, so as to maintain good structural stability in the process of Li plating/stripping. The new lithium metal anode based on doping and 3D carbon cloth shows good cycling stability and low polarizability in both symmetrical and full cells.
源语言 | 英语 |
---|---|
页(从-至) | 13210-13226 |
页数 | 17 |
期刊 | Dalton Transactions |
卷 | 51 |
期 | 35 |
DOI | |
出版状态 | 已出版 - 8 7月 2022 |