Automatic depression discrimination on FNIRS by using fastICA/WPD and SVM

Hong Song*, Weilong Du, Qingjie Zhao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

A method is proposed for distinguishing patients with depression from normal controls based on data measured by FNIRS during a cognitive task. First, Fast Independent Component Analysis (FastICA) and Wavelet Package Decomposition (WPD) are used to extract features from 52-channel Functional Near- Infrared Spectroscopy (FNIRS) data of patients with depression and normal healthy persons. Then a classifier based on Support Vector Machine (SVM) is designed for classification. The experimental results indicate that the proposed method can achieve a satisfactory classification with the accuracy 86.7647% for total and 90.74% for patients. Also, the results suggested that FNIRS may be a promising clinical tool in the diagnosis and treatment of psychiatric disorders.

源语言英语
主期刊名Proceedings of the 2015 Chinese Intelligent Automation Conference - Intelligent Information Processing
编辑Zhidong Deng, Hongbo Li
出版商Springer Verlag
257-265
页数9
ISBN(印刷版)9783662464687
DOI
出版状态已出版 - 2015
活动Chinese Intelligent Automation Conference, 2015 - Fuzhou, 中国
期限: 1 1月 2015 → …

出版系列

姓名Lecture Notes in Electrical Engineering
336
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议Chinese Intelligent Automation Conference, 2015
国家/地区中国
Fuzhou
时期1/01/15 → …

指纹

探究 'Automatic depression discrimination on FNIRS by using fastICA/WPD and SVM' 的科研主题。它们共同构成独一无二的指纹。

引用此