A Möbius rigidity of compact Willmore hypersurfaces in Sn+1

Limiao Lin, Tongzhu Li*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Let x:Mn→Sn+1 be an immersed hypersurface without umbilical point, then one can define the Möbius metric g, the Möbius second fundamental form B and the Blaschke tensor A on the hypersurface Mn which are invariant under the Möbius transformation group of Sn+1. A hypersurface is called a Willmore hypersurface if it is the critical point of the volume functional of Mn with respect to the Möbius metric g. In this paper, we prove that if the hypersurface x is a compact Willmore hypersurface without umbilical point, then [Formula presented] the equality holds if and only if the hypersurface Mn is Möbius equivalent to one of the Willmore tori [Formula presented] where the tensor [Formula presented].

源语言英语
文章编号123707
期刊Journal of Mathematical Analysis and Applications
484
1
DOI
出版状态已出版 - 1 4月 2020

指纹

探究 'A Möbius rigidity of compact Willmore hypersurfaces in Sn+1' 的科研主题。它们共同构成独一无二的指纹。

引用此