Abstract
The bidirectional reflectance distribution function (BRDF) data are essential for analyzing and modeling the material appearance of anisotropic surfaces. In order to acquire four-dimensional BRDF on the anisotropic material surfaces, a four-axis gonioreflectometer was designed and implemented. The instrument consists of a collimated, broadband light source, a four-axis rotation mechanism, a spectroradiometer, and a control system. The instrument is able to carry out spectral BRDF measurements over most of the incident and reflection hemispheres and the entire visible spectrum. One thousand twenty-four samples are obtained over the spectral range of 380 to 760 nm. The angular resolution of the BRDF measurement is <0.1 deg with good repeatability. A relative calibration method was adopted to obtain the absolute values of BRDFs. Various scanning schemes can be carried out by the instrument to scan the designated angular domains, enabling the instrument to capture material appearance with strong, distinctive anisotropic highlights and translucency. The obtained BRDF data of a textile sample demonstrate the instrument capability of capturing complex light scattering behaviors, including off-specular reflection peaks, off-plane reflection peaks, and backscattering. The designers of novel material appearance and computer graphics community will benefit from this work.
Original language | English |
---|---|
Article number | 124106 |
Journal | Optical Engineering |
Volume | 58 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2019 |
Keywords
- anisotropic surface
- appearance capture
- bidirectional reflectance distribution function measurement
- instrument design
- reflectometry