Tunable ferroelectricity and anisotropic electric transport in monolayer β -GeSe

Shan Guan, Chang Liu, Yunhao Lu, Yugui Yao, Shengyuan A. Yang

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)

Abstract

Low-dimensional ferroelectricity has attracted tremendous attention due to its huge potential in device applications. Here, based on first-principles calculations, we predict the existence of spontaneous in-plane electrical polarization and ferroelectricity in monolayer β-GeSe, a polymorph of GeSe with a boat conformation newly synthesized in experiment. The magnitude of the polarization is about 0.16nC/m, which is comparable to that of monolayer SnTe studied in recent experiment, and the intrinsic Curie temperature is estimated to be above 200 K. Interestingly, owing to its puckered structure, the physical properties of β-GeSe can be easily controlled by strain. The Curie temperature can be raised above room temperature by applying a 1% tensile strain, and the magnitude of polarization can be largely increased by strains in either the armchair or zigzag direction. Furthermore, we find that for the case with electron doping, applying strain can readily tune the anisotropic electric transport with the preferred conducting direction rotated by 90, which is connected to a strain-induced Lifshitz transition. The ratio between the effective masses along the two in-plane directions can undergo a dramatic change of two orders of magnitude even by a 2% strain. Our result reveals monolayer β-GeSe is a promising platform for exploring ferroelectricity in two dimensions and for nanoscale mechanoelectronic device applications.

Original languageEnglish
Article number144104
JournalPhysical Review B
Volume97
Issue number14
DOIs
Publication statusPublished - 10 Apr 2018

Fingerprint

Dive into the research topics of 'Tunable ferroelectricity and anisotropic electric transport in monolayer β -GeSe'. Together they form a unique fingerprint.

Cite this