TransSurv: Transformer-Based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer

Zhilong Lv, Yuexiao Lin, Rui Yan, Ying Wang*, Fa Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Survival analysis is a significant study in cancer prognosis, and the multi-modal data, including histopathological images, genomic data, and clinical information, provides unprecedented opportunities for its development. However, because of the high dimensionality and the heterogeneity of histopathological images and genomic data, acquiring effective predictive characters from these multi-modal data has always been a challenge for survival analysis. In this article, we propose a transformer-based survival analysis model (TransSurv) for colorectal cancer that can effectively integrate intra-modality and inter-modality features of histopathological images, genomic data, and clinical information. Specifically, to integrate the intra-modality relationship of image patches, we develop a multi-scale histopathological features fusion transformer (MS-Trans). Furthermore, we provide a cross-modal fusion transformer based on cross attention for multi-scale pathological representation and multi-omics representation, which includes RNA-seq expression and copy number alteration (CNA). At the output layer of the TransSurv, we adopt the Cox layer to integrate multi-modal fusion representation with clinical information for end-to-end survival analysis. The experimental results on the Cancer Genome Atlas (TCGA) colorectal cancer cohort demonstrate that the proposed TransSurv outperforms the existing methods and improves the prognosis prediction of colorectal cancer.

Original languageEnglish
Pages (from-to)3411-3420
Number of pages10
JournalIEEE/ACM Transactions on Computational Biology and Bioinformatics
Volume20
Issue number6
DOIs
Publication statusPublished - 1 Nov 2023
Externally publishedYes

Keywords

  • Survival analysis
  • genomic data
  • histopathological slides
  • multi-modal learning
  • transformer

Fingerprint

Dive into the research topics of 'TransSurv: Transformer-Based Survival Analysis Model Integrating Histopathological Images and Genomic Data for Colorectal Cancer'. Together they form a unique fingerprint.

Cite this