TY - JOUR
T1 - Transcriptome profiling of different types of human respiratory tract cells infected by SARS-CoV-2 highlight an unique role for inflammatory and interferon response
AU - Yang, Minghui
AU - Lei, Luping
AU - Cao, Qiumei
AU - Yang, Yang
AU - Wang, Jun
AU - Jiang, Xiao
AU - Huang, Kun
AU - Lai, Jinzhi
AU - Qing, Ling
AU - Wang, Yu
AU - Liu, Yingxia
N1 - Publisher Copyright:
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2021
Y1 - 2021
N2 - The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) at the end of 2019 has caused a large global outbreak and now become a major public health issue. However, there is currently a lack of data underlying how the human host interacts with SARS-CoV-2 virus. In the current study, We performed Venn-analysis, Gene ontology (GO), KEGG pathway analysis and Protein-protein interaction analysis of whole transcriptome studies with the aim of clarifying the genes and pathways potentially altered during human respiratory tract cell infection with SARS-CoV-2. We found 36 overlapping upregulated genes among different types of cells after viral infection. Further functional enrichment analysis revealed these Differential Expressed Genes (DEGs) are most likely involved in biological processes related to inflammatory response and response to cytokine, cell component related to extracellular space and I-kappa B/NF-kappa B complex, molecular function related to protein binding and cytokine activity. KEGG pathways analysis highlighted altered conical and casual pathways related to TNF, NF-kappa B, Cytokine-cytokine receptor interaction and IL-17 signaling pathways during SARS CoV-2 infection with CXCL1, CXCL2, CXCL3, CXCL8, CXCL10, IL32, CX3CL1, CCL20, IRF1, NFKB2 and NFKB1A up-regulated which may explain the inflammatory cytokine storms associated with severe cases of COVID-19.
AB - The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) at the end of 2019 has caused a large global outbreak and now become a major public health issue. However, there is currently a lack of data underlying how the human host interacts with SARS-CoV-2 virus. In the current study, We performed Venn-analysis, Gene ontology (GO), KEGG pathway analysis and Protein-protein interaction analysis of whole transcriptome studies with the aim of clarifying the genes and pathways potentially altered during human respiratory tract cell infection with SARS-CoV-2. We found 36 overlapping upregulated genes among different types of cells after viral infection. Further functional enrichment analysis revealed these Differential Expressed Genes (DEGs) are most likely involved in biological processes related to inflammatory response and response to cytokine, cell component related to extracellular space and I-kappa B/NF-kappa B complex, molecular function related to protein binding and cytokine activity. KEGG pathways analysis highlighted altered conical and casual pathways related to TNF, NF-kappa B, Cytokine-cytokine receptor interaction and IL-17 signaling pathways during SARS CoV-2 infection with CXCL1, CXCL2, CXCL3, CXCL8, CXCL10, IL32, CX3CL1, CCL20, IRF1, NFKB2 and NFKB1A up-regulated which may explain the inflammatory cytokine storms associated with severe cases of COVID-19.
KW - gene ontology
KW - inflammatory response
KW - pathway analysis
KW - SARS-CoV-2
KW - transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=85100944267&partnerID=8YFLogxK
U2 - 10.1080/26895293.2021.1879280
DO - 10.1080/26895293.2021.1879280
M3 - Article
AN - SCOPUS:85100944267
SN - 2689-5293
VL - 14
SP - 110
EP - 119
JO - All Life
JF - All Life
IS - 1
ER -