TY - JOUR
T1 - Topological Anderson insulator phenomena
AU - Xing, Yanxia
AU - Zhang, Lei
AU - Wang, Jian
PY - 2011/7/11
Y1 - 2011/7/11
N2 - We study the nature of the disorder-induced quantized conductance, i.e., the phenomena of topological Anderson insulator (TAI). The disorder effect in several different systems where the anomalous Hall effect exists is numerically studied using the tight-binding Hamiltonian. It is found that the TAI phenomena can also exist in the modified Dirac model where the quadratic corrections k2σz are included and the electron-hole symmetry is kept. These phenomena also occur in the graphene system with the next-nearest-neighbor coupling and the staggered sublattice potential. For the graphene sheet with Rashba spin-orbit interaction as well as an exchange field, a precursor of TAI is observed. A comparison between the localization length of the two-dimensional ribbon and two-dimensional cylinder structures clearly reveals the topological nature of these phenomena. Furthermore, analysis on the local current density in anomalous quantum Hall systems where the TAI phenomena may or may not arise reveals the nature of TAI phenomena. In the presence of small disorders, the conductance is not quantized and the bulk and edge states coexist in the system. As disorder strength increases, the bulk state is quickly destroyed, while the robust edge state may survive. When the edge state is robust enough to sustain the strong disorder that completely kills the bulk state, TAI phenomena arise.
AB - We study the nature of the disorder-induced quantized conductance, i.e., the phenomena of topological Anderson insulator (TAI). The disorder effect in several different systems where the anomalous Hall effect exists is numerically studied using the tight-binding Hamiltonian. It is found that the TAI phenomena can also exist in the modified Dirac model where the quadratic corrections k2σz are included and the electron-hole symmetry is kept. These phenomena also occur in the graphene system with the next-nearest-neighbor coupling and the staggered sublattice potential. For the graphene sheet with Rashba spin-orbit interaction as well as an exchange field, a precursor of TAI is observed. A comparison between the localization length of the two-dimensional ribbon and two-dimensional cylinder structures clearly reveals the topological nature of these phenomena. Furthermore, analysis on the local current density in anomalous quantum Hall systems where the TAI phenomena may or may not arise reveals the nature of TAI phenomena. In the presence of small disorders, the conductance is not quantized and the bulk and edge states coexist in the system. As disorder strength increases, the bulk state is quickly destroyed, while the robust edge state may survive. When the edge state is robust enough to sustain the strong disorder that completely kills the bulk state, TAI phenomena arise.
UR - http://www.scopus.com/inward/record.url?scp=79961220997&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.84.035110
DO - 10.1103/PhysRevB.84.035110
M3 - Article
AN - SCOPUS:79961220997
SN - 1098-0121
VL - 84
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 3
M1 - 035110
ER -