Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl

Li Wang, Jing Yao Liu*, Ze Sheng Li, Chia Chung Sun

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The mechanisms of the SH (SD) radicals with Cl2 (R1), Br 2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311 ++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPWIK geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311 ++G(3df, 2pd)//MP2/6-311 G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a′) leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a′ of 99% at 298 K, which is quite different from the experimental result of k3a′/k3′ = 54 ± 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kd are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase as the temperature increases.

Original languageEnglish
Pages (from-to)184-193
Number of pages10
JournalJournal of Computational Chemistry
Volume26
Issue number2
DOIs
Publication statusPublished - 30 Jan 2005
Externally publishedYes

Keywords

  • Ab initio calculation
  • Direct dynamics
  • Rate constant
  • Variational transition-state theory

Fingerprint

Dive into the research topics of 'Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl'. Together they form a unique fingerprint.

Cite this