Abstract
Doping in perovskite is challenging and competitive due to the inherently fast growth mechanism of perovskite structure. Here, we demonstrate successful synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires (MWs) that have diameters up to ?5 μm and lengths up to millimeters via an antisolvent vapor-assisted template-free method. Microstructure characterization confirms the uniformly doped Fe in the high-quality crystal perovskite MWs. Significantly, doping the Fe(III) concentration can affect both the MW morphology and photoluminescence (PL). The band edge emission of the MW at variable excitation has been accounted for by the superposition and combination of optical transitions of nearby singlet, triplet, and magnetic polaronic excitons. High-quality two-photon PL emission and the enhanced nonlinear absorption coefficient of Fe-doped MWs have been experimentally demonstrated. This superhigh nonlinear absorption coefficient and high-quality optical properties endow it with promising applications in spin-related optical switching and optical limiting devices.
Original language | English |
---|---|
Pages (from-to) | 4878-4885 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry Letters |
Volume | 9 |
Issue number | 17 |
DOIs | |
Publication status | Published - 6 Sept 2018 |