Abstract
Developing cheap and stable electrocatalysts is considered the key factor to achieve the large-scale application of fuel cells. In this paper, three-dimensional (3D) porous Co-doped vanadium nitride (VN) nanosheet-assembled microflowers are prepared with a facile solvothermal approach followed by nitridation at 500 °C in NH3. It is found that the microflower morphology and the Co doping both significantly enhance the oxygen reduction reaction (ORR) performance of the materials. Because the unique 3D porous structure provides higher specific surface area and more active sites as well as enriching the d electrons of V via doping, Co also improves the intrinsic activity of VN. Our optimal V0.95Co0.05N microflowers achieve a half-wave potential for the ORR of up to 0.80 V in 0.1 M KOH solution, which is almost comparable to that of commercial 20% Pt/C. More importantly, the catalysts show superior durability with little current decline (less than 12%) during chronoamperometric evaluation for over 25 000 s. These features make the V0.95Co0.05N microflowers attractive for fuel cell applications.
Original language | English |
---|---|
Pages (from-to) | 11604-11612 |
Number of pages | 9 |
Journal | ACS applied materials & interfaces |
Volume | 10 |
Issue number | 14 |
DOIs | |
Publication status | Published - 11 Apr 2018 |
Externally published | Yes |
Keywords
- Co-doped
- d electrons
- fuel cells
- microflowers
- oxygen reduction reaction
- vanadium nitride