Super Wide Regression Network for Unsupervised Cross-Database Facial Expression Recognition

Na Liu, Baofeng Zhang, Yuan Zong, Li Liu, Jie Chen, Guoying Zhao, Lunchao Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

Unsupervised cross-database facial expression recognition (FER) is a challenging problem, in which the training and testing samples belong to different facial expression databases. For this reason, the training (source) and testing (target) facial expression samples would have different feature distributions and hence the performance of lots of existing FER methods may decrease. To solve this problem, in this paper we propose a novel super wide regression network (SWiRN) model, which serves as the regression parameter to bridge the original feature space and the label space and herein in each layer the maximum mean discrepancy (MMD) criterion is used to enforce the source and target facial expression samples to share the same or similar feature distributions. Consequently, the learned SWiRN is able to predict the expression categories of the target samples although we have no access to any label information of target samples. We conduct extensive cross-database FER experiments on CK+, eNTERFACE, and Oulu-CASIA VIS facial expression databases to evaluate the proposed SWiRN. Experimental results show that our SWiRN model achieves more promising performance than recent proposed cross-database emotion recognition methods.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1897-1901
Number of pages5
ISBN (Print)9781538646588
DOIs
Publication statusPublished - 10 Sept 2018
Externally publishedYes
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Conference

Conference2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period15/04/1820/04/18

Keywords

  • Cross-database facial expression recognition
  • Domain adaptation
  • Super wide network
  • Transfer learning

Fingerprint

Dive into the research topics of 'Super Wide Regression Network for Unsupervised Cross-Database Facial Expression Recognition'. Together they form a unique fingerprint.

Cite this