Abstract
The discontinuous atmospheric pressure interface (DAPI) has allowed the transfer of ions from atmospheric pressure ionization sources to an ion trap mass analyzer in hand-held mass spectrometers with miniature pumping systems at transfer efficiencies high enough for proper chemical analysis. The DAPI potentially would allow a significant enhancement to the mass analysis efficiency of laboratory-scale mass spectrometers, which have pumping systems of much larger capacities. A laboratory-scale mass spectrometer with a DAPI-RIT (rectilinear ion trap)-DAPI configuration has been developed to explore this possibility. The gas dynamic effects on ion trapping and mass analysis have been studied at various conditions. A pulsed nanoelectrospray ionization source synchronized with the DAPI has been implemented to improve the sample usage efficiency as well as to adjust the number of ions to be trapped for MS analysis, so that space charge effects can be avoided. Single-scan spectra of peptides were recorded with an ionization time as short as 1 μs, corresponding to an analyte consumption of several attomoles. The simplicity of application of the DAPI for performing ion/molecule and ion/ion reactions has also been demonstrated with proton transfer and electron transfer dissociation reactions with peptides.
Original language | English |
---|---|
Pages (from-to) | 6584-6592 |
Number of pages | 9 |
Journal | Analytical Chemistry |
Volume | 82 |
Issue number | 15 |
DOIs | |
Publication status | Published - 1 Aug 2010 |
Externally published | Yes |