Abstract
Structural energy storage composites present advantages in simultaneously achieving structural strength and electrochemical properties. Adoption of carbon fiber electrodes and resin structural electrolytes in energy storage composite poses challenges in maintaining good mechanical and electrochemical properties at reasonable cost and effort. Here, we report a simple method to fabricate structural supercapacitor using carbon fiber electrodes (modified by Ni-layered double hydroxide (Ni-LDH) and in-situ growth of Co-metal-organic framework (Co-MOF) in a two-step process denoted as Co-MOF/Ni-LDH@CF) and bicontinuousphase epoxy resin-based structural electrolyte. Co-MOF/Ni-LDH@CF as electrode material exhibits improved specific capacity (42.45 F·g−1) and cycle performance (93.3% capacity retention after 1000 cycles) in a three-electrode system. The bicontinuousphase epoxy resin-based structural electrolyte exhibits an ionic conductivity of 3.27 × 10−4 S·cm−1. The fabricated Co-MOF/Ni-LDH@CF/SPE-50 structural supercapacitor has an energy density of 3.21 Wh·kg−1 at a power density of 42.25 W·kg−1, whilst maintaining tensile strength and modulus of 334.6 MPa and 25.2 GPa. These results show practical potential of employing modified commercial carbon fiber electrodes and epoxy resin-based structural electrolytes in structural energy storage applications.
Original language | English |
---|---|
Pages (from-to) | 1552-1563 |
Number of pages | 12 |
Journal | Nano Research |
Volume | 17 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2024 |
Keywords
- carbon fiber electrode
- structural electrolyte
- structural energy storage composites
- supercapacitor