Abstract
Continuous feedback on a tire is an essential means to ensure tire safety. Smart tires are an important part of the future vehicle control system, which affects the safety and comfort of vehicles by combining sensors with traditional tires to achieve continuous monitoring of real-time dynamic parameters. A stretchable and flexible sensor made of laser-induced graphene (LIG) and PDMS, designed for use in smart tires, is presented in this work. The sensor is known as a LIG-PDMS sensor. Using transfer printing, LIG is formed on a commercial polyimide film under the scribing of a laser beam following the predesigned route before being transferred to a PDMS film. This technology is used to successfully prepare flexible sensors for measuring the tire road interaction at different driving speeds due to its flexibility and shape-following characteristics. The real-time monitoring of the wheel speed and the shape of the tire grounding mark during the driving process is realized by embedding multiple LIG sensors in the tire to monitor the strain information of the tire grounding. Results show that the tire deformation can be accurately feedbacked with the LIG sensors, demonstrating our method's capability for designing and manufacturing intelligent tires.
Original language | English |
---|---|
Article number | 13 |
Journal | Soft Science |
Volume | 3 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2023 |
Keywords
- Laser-induced graphene (LIG)
- shape-following characteristic
- smart tire
- stretchable strain sensor