TY - GEN
T1 - Spatial Feature Regularization and Label Decoupling Based Cross-Subject Motor Imagery EEG Decoding
AU - Zhou, Yifan
AU - Luo, Tian jian
AU - Zhang, Xiaochen
AU - Han, Te
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.
PY - 2024
Y1 - 2024
N2 - Motor imagery (MI) serves as a vital approach to constructing brain-computer interfaces (BCIs) based on electroencephalogram (EEG) signals. However, the time-variant and label-coupling characteristics of EEG signals, combined with the limited sample sizes, often necessitate MI-EEG decoding across subjects. Unfortunately, existing methods encounter challenges related to interference from out-of-distribution features and feature-label coupling, resulting in the deterioration of decoding performance. To address these issues, this paper proposes a novel MI-EEG feature learning framework that focuses on decoupling features from labels and regularizing the feature representation. The proposed framework leverages aligned MI-EEG samples to extract Gaussian weighting regularized spatial features. Subsequently, a domain adaptation method is employed to decouple the extracted features from labels across different subjects’ domains, thereby facilitating cross-subject MI-EEG decoding. To evaluate the effectiveness and efficiency of the proposed method, we conducted experiments using three benchmark MI-EEG datasets, consisting of four distinct groups of experiments. The experimental results demonstrate the effectiveness, efficiency, and parameter insensitivity of the proposed method, indicating its significant application value in the field of MI-EEG decoding.
AB - Motor imagery (MI) serves as a vital approach to constructing brain-computer interfaces (BCIs) based on electroencephalogram (EEG) signals. However, the time-variant and label-coupling characteristics of EEG signals, combined with the limited sample sizes, often necessitate MI-EEG decoding across subjects. Unfortunately, existing methods encounter challenges related to interference from out-of-distribution features and feature-label coupling, resulting in the deterioration of decoding performance. To address these issues, this paper proposes a novel MI-EEG feature learning framework that focuses on decoupling features from labels and regularizing the feature representation. The proposed framework leverages aligned MI-EEG samples to extract Gaussian weighting regularized spatial features. Subsequently, a domain adaptation method is employed to decouple the extracted features from labels across different subjects’ domains, thereby facilitating cross-subject MI-EEG decoding. To evaluate the effectiveness and efficiency of the proposed method, we conducted experiments using three benchmark MI-EEG datasets, consisting of four distinct groups of experiments. The experimental results demonstrate the effectiveness, efficiency, and parameter insensitivity of the proposed method, indicating its significant application value in the field of MI-EEG decoding.
KW - EEG Decoding
KW - Label Decoupling
KW - Motor Imagery
KW - Pattern Recognition
KW - Spatial Feature Regularization
UR - http://www.scopus.com/inward/record.url?scp=85181767491&partnerID=8YFLogxK
U2 - 10.1007/978-981-99-8558-6_34
DO - 10.1007/978-981-99-8558-6_34
M3 - Conference contribution
AN - SCOPUS:85181767491
SN - 9789819985579
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 407
EP - 423
BT - Pattern Recognition and Computer Vision - 6th Chinese Conference, PRCV 2023, Proceedings
A2 - Liu, Qingshan
A2 - Wang, Hanzi
A2 - Ji, Rongrong
A2 - Ma, Zhanyu
A2 - Zheng, Weishi
A2 - Zha, Hongbin
A2 - Chen, Xilin
A2 - Wang, Liang
PB - Springer Science and Business Media Deutschland GmbH
T2 - 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023
Y2 - 13 October 2023 through 15 October 2023
ER -